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Received 7 October 1996

Abstract. The temperature dependence of the magnetic susceptibility of FeSi is calculated
over a wide temperature range on the basis of spin-fluctuation theory applied to a model
of an exchange-enhanced semiconductor. We can reproduce the low-temperature activation-
type behaviour of the susceptibility as well as the Curie–Weiss behaviour observed at high
temperature. We also give an explanation for the behaviour of the observed wave-vector- and
frequency-dependent neutron scattering intensities.

1. Introduction

The cubic compound FeSi with B20 crystal structure has long attracted lots of interest
because of the anomalous temperature dependence of its various physical properties. The
magnetic susceptibility, for instance, shows an activation-type temperature dependence at
low temperature. After showing a broad maximum at around 500 K, it starts to decrease,
showing a Curie–Weiss-like temperature dependence (Jaccarinoet al 1967). From the
band-structure calculations by Nakanishiet al (1980) for the series of 3d-transition-metal
monosilicides, it was shown that FeSi is a narrow-gap semiconductor.

In the late 1970s we proposed (Takahashi and Moriya 1979) that the magnetic and
thermal properties of FeSi can possibly be explained via the idea of temperature-induced
magnetic moments proposed by Moriya (1978). The study was done in the course of
trials to treat the spin fluctuations of general amplitude with the aim of extending the
self-consistently renormalized (SCR) spin-fluctuation theory (for reviews, see Moriya 1985)
towards a unified description of itinerant-electron magnetism (Moriya and Takahashi 1978).
The negative mode–mode coupling effective at low temperature will induce a local moment
with increasing temperature. At high temperature, the mode–mode coupling will change
its sign, and it then suppresses the growth of the spin-fluctuation amplitude, leading to the
observed Curie–Weiss-like temperature dependence of the magnetic susceptibility. Because
of this non-linear mode–mode coupling, we cannot apply the SCR theory to this problem,
which always gives constant positive mode–mode coupling.

Since then, experimental efforts have been made in order to detect the temperature-
induced magnetic moments directly. But the efforts were either not successful in detecting
any signals (Motoyaet al 1980, Kohgiet al 1986, Ohet al 1987) or controversial (Ziebeck
et al 1983) before 1987. Using a single crystal and the polarization technique, Shirane
et al (1987) were able to detect the temperature-induced magnetic moment of FeSi, and
Tajima et al (1988) revealed the wave-vector- and frequency-dependent neutron scattering
cross section. We here summarize their main results: (1) they revealed the dominant
ferromagnetic spin correlation as seen in the quasi-elastic peak of the scattering intensity
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around the origin of the wave-vector space; and (2) the integrated intensities with respect
to the frequency, however, show little wave-vector dependence.

Interest has recently been renewed in FeSi since it was suggested that it may be classified
as a typical Kondo insulator among transition metal compounds (Aeppli and Fisk 1992).
This amounts to saying that the observed energy gap may result not from its electronic band
structure, but as the result of the many-body electron correlations. Experimental efforts
have been made to check this possibility (Schlesingeret al 1993, Ohtaet al 1994, Saitoh
et al 1995). Optical conductivity measurements by Schlesingeret al (1993) suggested that
the charge response of FeSi is different from that of ordinary semiconductors. However, it
was shown that the behaviour of the optical conductivity is mostly accounted for in terms
of the band structure of this compound (Saitohet al 1995). The temperature dependence
of the magnetic susceptibility at low temperature was also found to be consistent with the
energy gap structure derived from the band-structure calculations (Jarlborg 1995). Therefore
it is more probable that FeSi is not a Kondo insulator, and its energy gap comes from the
single-particle band structure of this compound. The problem is therefore that of how to
reproduce the Curie–Weiss temperature dependence of the magnetic susceptibility at high
temperature, and how to describe its temperature dependence over a wide temperature range
in a unified framework.

The purpose of the present paper is twofold. The first aim is to give a theoretical
description of the observed behaviours in neutron scattering experiments. The second is
to discuss the temperature dependence of the magnetic susceptibility on the basis of the
observed spin-fluctuation spectrum. From our point of view, the magnetic properties of
various materials should be interpreted on the basis of the nature of the spin fluctuations
contained in them. When we published our paper, no detailed information was available
concerning the nature of the spin-fluctuation spectrum of FeSi. We did not even know that
the ferromagnetic correlation is actually dominant.

The present paper differs from our former study in the following points. In our paper
(Takahashi and Moriya 1979, Takahashiet al 1983), the non-linear effect of mode–mode
coupling among various spin-fluctuation modes played the central role in determining the
temperature dependence of the magnetic susceptibility. In the former treatment only the
thermal components of spin fluctuations were taken into account, and no explicit mention of
the temperature dependence of the quantum (or zero-point) components was made. Although
the temperature dependence of the non-linear mode–mode coupling constant was taken into
account, the explicit temperature dependence of the spin-fluctuation spectrum was ignored,
although the temperature dependence of the average distribution of the spectrum was taken
into account. From the nature of the static approximation, the calculated temperature
dependence of the magnetic susceptibility at low temperature did not look like the observed
behaviour, even if we included the dynamical effects.

In contrast, in the present paper we are starting from the idea that all of the magnetic
properties are derived from the nature of the spin fluctuations. With the use of a kind of sum
rule for the total spin-fluctuation amplitude, the temperature dependence of the magnetic
susceptibility is derived. In this way, the zero-point spin-fluctuation components also play a
significant role. For later convenience, we here define the above-mentioned spin-fluctuation
components below. From the fluctuation-dissipation theorem of the linear response theory
of the statistical mechanics, the squared local spin amplitude is expressed in terms of the
dynamical magnetic susceptibilityχ(q, ω) in the following form:

〈S2
i 〉 =

3

2N2
0

∑
q

∫ ∞
0

dω

π
coth(βω/2) Imχ(q, ω). (1)
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That is

〈S2
i 〉 = 〈S2

i 〉th+ 〈S2
i 〉zp. (2)

The thermal and quantum (zero-point) amplitudes are then defined by

〈S2
i 〉th =

3

N2
0

∑
q

∫ ∞
0

dω

π
n(ω) Imχ(q, ω) n(ω) = [exp(βω)− 1]−1 (3)

〈S2
i 〉zp = 3

2N2
0

∑
q

∫ ∞
0

dω

π
Imχ(q, ω) (4)

whereSi is the spin operator on someith lattice site andβ is the reciprocal of the absolute
temperature. We use the units where ¯h = 1, throughout the paper. Note that the zero-
point amplitude defined above does show temperature dependence through the change
of the spin-fluctuation spectrum with temperature. The observed almostq-independent
frequency-integrated neutron scattering cross section clearly suggests that the zero-point
spin fluctuations also play an important role.

We have shown that the near temperature independence of the total spin-fluctuation
amplitude gives rise to the same form of the equation as the SCR theory (Takahashi 1986,
1990). In addition, we were successful in deriving its interesting consequences (Takahashi
1992, 1994, 1995). The magnetic properties of weak ferromagnets are described by a
smaller number of independent parameters characterizing the spin-fluctuation spectrum in
q- andω-space than those of the SCR theory, as was confirmed by subsequent experiments
(Yoshimuraet al 1988a, b, Shimizuet al 1990, Nakabayashiet al 1992). In the present
treatment, because of the existence of the energy gap, a slight modification of our original
idea will be needed. We have to take into account various extra temperature dependences
inherent in the present problem. For instance, we have to take into account the temperature
dependence of the total spin-fluctuation amplitude. The spin-fluctuation spectrum also
depends on temperature.

The plan of the paper is as follows. In the next section we deal with the neutron
scattering intensities on the basis of the simple semiconductor model. We calculate the
temperature dependence of the dynamical magnetic susceptibility on the basis of the random-
phase approximation. In the third section, we propose the sum rule for the total spin-
fluctuation amplitude. The temperature dependence of the magnetic susceptibility is then
derived with the use of the sum rule and on the basis of the spin-fluctuation spectrum
derived in the second section. The final section is devoted to a discussion.

2. The spin-fluctuation spectrum of exchange-enhanced semiconductors

The aim of the present section is to give a theoretical explanation for the wave-vector and
frequency dependence of neutron scattering intensities observed by Tajimaet al (1988a, b).
To begin with, let us evaluate the dynamical magnetic susceptibility of the system in the
random-phase approximation (RPA). It is, in general, very difficult to do such calculations
on the basis of the results of realistic band-structure calculations. In order to extract the
underlying physics of the system, we are instead using a simple model system, and we make
some further drastic simplifications. The Hamiltonian that we are concerned with here is
the following single-band Hubbard Hamiltonian for conduction electrons:

H =
∑
kσ

(εk − µ)c†kσ ckσ + U
∑
i

ni↑ni↓ (5)
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wherec†kσ (ckσ ) is the creation (annihilation) operator for conduction electrons with wave
vectork and spin directionσ . The first term represents the single-particle kinetic energy
of conduction electrons and the second one the intra-atomic Coulomb repulsionU among
them on the sameith lattice site of Fe ions.

For a realistic description of the system, we would have to take into account the band
degeneracy of conduction electrons as well as the hole band contributions. We neglect all
of these effects, although the latter effect is implicitly taken into account by considering
that the chemical potentialµ always stays within the gap region below the bottom of the
conduction band by the finite gap1, i.e.,

1 = ε0− µ.
We assume that the temperature dependence of the gap energy1 is neglected. The inter-band
contributions to the dynamical susceptibility are also neglected. The neglected contributions
taken together may give rise to some slight quantitative corrections to our final results, but
we assume that the qualitative features will remain unchanged by these effects.

In the RPA the dynamical magnetic susceptibilityχ(q, ω) in units of(gµB)2 is expressed
as

χ(q, ω) = χ0(q, ω)

1− Iχ0(q, ω)
(6)

whereχ0(q, ω) is the non-interacting susceptibility given by

χ0(q, ω) =
∑
k

f (εk+q)− f (εk)
ω + εk − εk+q . (7)

I = U/N0 (N0: the number of magnetic sites of the crystal), andf (ε) is the Fermi dist-
ribution function. In order to evaluate the above expression, we assume a free-electron-like
dispersion relation forεk in (5) with an effective massm∗, i.e.,

εk = ε0+ k2

2m∗
.

In the following numerical calculations, all of the energies are measured in units of the gap
energy1 and the wave-vectors in units ofk0, defined by

k0 =
√

2m∗1.

We thus introduce the reduced dimensionless temperaturet , the frequencyw, and the wave-
vectorp:

t = kBT /1 w = ω/1 p = q/k0.

The summation over spherical-angle degrees of freedom of (7) is easily performed, and
gives the following form of the non-interacting dynamical susceptibility. The calculation is
essentially the same as that of the free-electron-gas model. The difference is that we cannot
replace the Fermi distribution function with the step function in the present case and we
have to deal with its temperature dependence explicitly:

χ0(q, ω) = 3N0

21x3
0

F(p,w) (8)

F(p,w + i0) = 1

2p

∫ x0

0
x dx f (x)

{
ln

(
p+ − x
p+ + x

)
− ln

(
p− − x
p− + x

)}
= F ′(p,w)+ iF ′′(p,w) (9)

pσ = −(w + i0+ σp2)/2p
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where x0 = kBZ/k0 with kBZ, the effective zone-boundary wave-vector, given by the
expression(6π2N0/V )

1/3 (V : the volume of the crystal), and the Fermi distribution function
f (x) is given by

f (x) = 1/[exp((x2+ 1)/t)+ 1].

The real and the imaginary partsF ′ and F ′′ in (9) are, respectively, expressed in the
following integral forms:

F ′(p,w) = 1

2p

∫ x0

0
x dx f (x)

{
ln

∣∣∣∣x − p+x − p+

∣∣∣∣− ln

∣∣∣∣x − p−x − p−

∣∣∣∣} (10)

F ′′(p,w) = π

2p

{∫ min(x0,p−)

0
x dx f (x)−

∫ min(x0,p+)

0
x dx f (x)

}
. (11)

In the small-q, ω region, the imaginary part is easily integrated, giving

F ′′(p,w) = πt

4p
{ln(1+ exp[−(1+ p2/4+ w2/4p2− w/2)/t ])

− ln(1+ exp[−(1+ p2/4+ w2/4p2+ w/2)/t ])}. (12)

It is easy to see thatF ′′(p,w) is given by the followingw-linear form whenw is very
small:

F ′′(p,w) = πw

4p

1

exp[(1+ p2/4)/t ] + 1
. (13)

We have to perform numerical integration to obtain the real part ofF ′(p,w) for a given
value ofp andw.

0.0 0.2 0.4 0.6 0.8 1.0
w

0.0

0.1

0.2

0.3

0.4

0.5
p=0.1
p=0.2
p=0.3

0.0 0.2 0.4 0.6 0.8 1.0
w

0.0

0.1

0.2

0.3

0.4

0.5
t=0.5
t=1.0
t=1.5

(a) (b)

Figure 1. The frequency dependence ofI Imχ(q, ω) for p = 0.1, 0.2, and 0.3 att = 1.0 (a),
and forp = 0.1 at t = 0.5, 1.0, and 1.5 (b).

On substituting (8) into (6), the imaginary part ofχ(q, ω) is represented by

Imχ(q, ω) = 1

Iα(t)

γp(w)

[1/α(t)− 1+ λp(w)]2+ γ 2
p (w)

(14)
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0.0 0.1 0.2
p

0.0

0.1

0.2

0.3

0.4

Γ q

t=0.5
t=1.0
t=2.0

Figure 2. The wave-vector dependence of the damping constant (half-width)0q at t = 0.5, 1.0,
and 2.0.

where we defineα0, α(t), λp(w), andγp(w) by

α0 = 3N0

21x3
0

I α(t) = α0F
′(0, 0)

λp(w) = 1− F ′(p,w)/F ′(0, 0)

γp(w) = F ′′(p,w)/F ′(0, 0).

We show in figure 1 thew-dependence ofI Imχ(q, ω) for several values ofp at t = 1.0
(a) and for several values oft for a fixed wavenumberp = 0.1. We assumeα0 = 1
throughout this paper. As shown in (13), becauseγp(w) is proportional tow for small
w, thew-dependence of the imaginary part is usually analysed in terms of the following
Lorentzian form:

Imχ(q, ω) ∝ 0qω

ω2+ 02
q

. (15)

By comparing (14) and (15) above, the damping constant0q is found to be

0q(w) = w

γp(w)

[
1/α(t)− 1+ λp(w)

]
0q = 0q(w)

∣∣
w→0 =

4pF ′(0, 0)

π
{1+ exp[(1+ p2/4)/t ]}(1/α(t)− 1+ λp(0)). (16)

The above analysis implicitly assumes that thew-dependence of0q(w) is very weak for
small w. We found, however, we cannot neglect thew-dependence of0q(w) especially
at low temperature. The value of0q defined in (16) overestimates the actual half-width
of the spectrum. In the present paper, we numerically evaluated the damping constant
0q from the spectral half-width of Imχ(q, ω)/ω. The value of0q obtained in this way
differs significantly from the one defined in (16) at low temperature. At high temperature,
the difference tends to become very small. We show theq-dependence of the half-
width in figure 2 for several temperaturest . All of the curves show goodp-linear
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dependence, indicating the Landau damping mechanism of the excited conduction electrons.
The behaviour is also in good accordance with experiments except at low temperature
(T = 300 K), where the observed0q shows a steep increase according to theq2-like
behaviour. Note that we have to take into account the considerable experimental errors in
deriving0q due to the very weak neutron intensities for such low temperatures. We have
to be very careful in drawing any definite conclusions from the above discrepancy between
the theory and the experiments.

0.0 1.0 2.0
t

0.0

0.2

0.4

p=0.05
p=0.2

Figure 3. The t-dependence of the damping constant0q for p = 0.05 and 0.2.

As for the t-dependence of the half-width, we plot in figure 3 calculated values of0q
againstt for p = 0.05 and 0.2. We see the general tendency that0q increases witht at
low temperature. After showing a broad maximum, it starts to decrease with increasing
temperature. If we discard the low-temperature part of our calculated results because of the
lack of corresponding experimental data, the rest of thet-dependence of0q for p = 0.2
seems to reproduce well the observed monotonically decreasing behaviour for moderate
values ofq. Though we can reproduce the increasing behaviour of0q for small q at low
temperature, we were not successful in deriving its monotonically increasing behaviour. It
is, however, at least consistent with the observed very weak temperature dependence for
small wave-vectors.

The neutron scattering cross section is proportional to the following function,S(q, ω):

S(q, ω) = 1

1− exp(−βω) Imχ(q, ω) (17)

or

S(q, ω) = 1

1− exp(−w/t)
γp(w)/Iα(t)

[1/α(t)− 1+ λp(w)]2+ γ 2
p (w)

. (18)
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0.0 0.1 0.2 0.3 0.4
p

0.0

5.0

10.0

15.0

20.0

IS
(q

,0
)

Figure 4. The calculatedq-dependence ofIS(q, 0) for t = 1.2.

We show in figure 4 the calculated wave-vector dependence ofIS(q, 0) for t = 1.2.
We see the diverging behaviour ofS(q, 0) around the origin, indicating the ferromagnetic
correlation. We also show, in figure 5, the integrated intensity as a function of the wave-
vectorp for several temperatures (a), and the wave-vector dependence of each component
of the thermal and the zero-point spin-fluctuation amplitudes (b). All of the curves for
total amplitudes are almostq-independent, while their components show complementary
q-dependences, keeping their sums almostq-independent.

To conclude, most of the qualitative behaviours of the observedS(q, ω) in q, ω-space
seem to be relatively well accounted for by the present simple RPA treatment based on the
semiconductor model. If we take into account the precise temperature dependence of the
magnetic susceptibility going beyond the RPA as will be discussed below, the agreements
are further improved. Slight qualitative discrepancies exist between the present theory and
experiments as regards theq-dependence of0q at low temperature, and itst-dependence
for small q.

3. Magnetic properties of FeSi

In the preceding section, we showed that the qualitative features of the neutron scattering
cross section inq, ω-space are well explained in the framework of the RPA. The approx-
imation, however, is equivalent to evaluating the temperature dependence of the magnetic
susceptibility in terms of the single-particle excitations through the electronic density-of-
states curve. At low temperature such calculations based on the band-structure calculation
are found to be in good agreement with experiments (Ohtaet al 1994, Jarlborg 1995). The
problem of this section is to derive the Curie–Weiss-like temperature dependence at high
temperature.

Our strategy is very simple. We first note the following relation, which holds for the
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0.0 0.1 0.2 0.3 0.4
p

0.0

2.0

4.0

6.0

t=0.8
t=1.2
t=1.6

0.0 0.1 0.2 0.3 0.4
p

0.0

1.0

2.0

3.0

4.0

thermal
quantum
total

(a) (b)

Figure 5. (a) The q-dependence of the integrated neutron intensity fort = 0.8, 1.2, and
1.6. (b) Theq-dependence of the total spin-fluctuation amplitude (solid line), and each of its
component thermal (dashed line) and quantum zero-point (chain line) amplitudes.

spin operators on eachith lattice site:

1

2
〈{S+i , S−i }〉 =

〈
1

2
(ni↑ + ni↓)− ni↑ni↓

〉
(19)

where {A,B} is the anti-commutation relation between operatorsA and B, and 〈· · ·〉
represents the canonical thermal average. The second term of the right-hand side of (19)
can be neglected because it is very small when the electron occupations are small, and even
if they are finite it is also neglected because of the on-site Coulomb repulsion between spin-
up and spin-down electrons. In the present case, it is neglected mainly for the first reason
given above, as will be shown below in figure 6. It follows that the right-hand side of (19)
is simply determined by the thermal average of the occupation numbers of the conduction
electrons, and it is thus evaluated in terms of the single-particle Green’s functionGkσ :

〈ni〉 =
∑
σ

〈niσ 〉 = 1

πN0

∑
kσ

∫ ∞
−∞

dε f (ε) ImGkσ (ε) =
∫ ∞
−∞

dε f (ε)ρ(ε) (20)

ρ(ε) = 1

πN0

∑
kσ

ImGkσ (ε) (21)

whereρ(ε) is the local density of states per magnetic ion. The quasi-particle pole of the
Green’s functionGkσ is affected by the effects of a shift and a lifetime broadening because
of various scattering processes. These effects are, however, smeared out by the process
of the integration over the whole Brillouin zone, and the local densityρ(ε) defined above
will be well approximated by the density of states obtained by band-structure calculations.
The local density is less affected by the low-lying magnetic excitations, and its temperature
dependence is neglected.
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0.0 1.0 2.0 3.0
t

0.0

0.1

0.2

0.3

0.4

0.5

0.0 2.0 4.0
ε

0.0

0.2

0.4

ρ(
ε)

Figure 6. The temperature dependence of the occupation number〈ni〉. The model density of
states is shown in the inset.

In the metallic system with a finite density of states at the Fermi energy, the temperature
dependence of the Fermi distribution function is neglected. This is why we assumed the
total spin-fluctuation amplitude to be temperature independent in our treatment of weakly
ferromagnetic materials. In the present case, however, we have to take into account the
temperature dependence of〈ni〉 through that of the Fermi distribution functionf (ε). The
point is that its temperature dependence is determined independently of low-lying magnetic
excitations. Therefore (19) serves as an external condition obeyed by the spin-fluctuation
spectrum. Now with the use of (1), the sum rule (19) can be expressed in terms of the
imaginary part of the dynamical magnetic susceptibility as follows:

1

N2
0

∑
q

∫ ∞
0

dω

π
coth(βω/2) Imχ(q, ω) =

∫ ∞
−∞

dε f (ε)ρ(ε). (22)

Note that the dynamical susceptibilityχ(q, ω) in the RPA is not consistent with the
requirement that its static and uniform limit has to coincide with the exact magnetic
susceptibility. In the RPA, the limit is given by the value,I [1/α(t)− 1], obtained from the
Hartree–Fock approximation. In order to recover this condition, we assume that the form
of the imaginary part ofχ(q, ω) in (14) is given by

Imχ(q, ω) = δ + 1

I [δ + λp(w)]
γp(w)[δ + λp(w)]

[δ + λp(w)]2+ γ 2
p (w)

(23)

where we define the reciprocal magnetic susceptibilityδ by

δ = 1

Iχ
= 1

α(t)
− 1+1δ. (24)

The last term1δ in (24) represents the many-body correction to the Hartree–Fock
approximation.

Equation (19) is now regarded as the external constraint forδ. We can regardδ as a
free disposable parameter and at each temperature determine its magnitude from the above
condition. We can thus derive the temperature dependence of the magnetic susceptibility
over a wide temperature range. At low temperature, for example, becauseδ is very large,
Imχ(q, ω) is well approximated byγp(w)/Iδ. Then from the condition (19), it is easy to see
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0.0 1.0 2.0
t

0.00

0.01

0.02

0.03

1/
δ

Figure 7. The calculated temperature dependence of the reduced magnetic susceptibility, 1/δ.

that (22) is well satisfied by the Hartree–Fock solution and the correction1δ is negligible.
The condition becomes effective only at high temperatures where the susceptibility increases
and in the presence of the enhanced spin-fluctuation amplitudes.

In order to make the actual calculation more tractable, we utilize the fact that the
frequency-integrated neutron intensity is almostq-independent. This means that, in place
of (22), we can determineδ from the following condition for some single wave-vector
q = q0:

1

N0

∫ ∞
0

dω

π
coth(βω/2) Imχ(q0, ω) =

∫ ∞
−∞

dε f (ε)ρ(ε). (25)

We solved (25) numerically forδ. In the actual calculations, we employed the model density
of states forρ(ε) shown in the inset of figure 6, and assumedq0 = 0.1. The temperature
dependence of〈ni〉 is shown in figure 6, and the calculated temperature dependence of
the susceptibility in figure 7. From figure 7 we see that the temperature dependence ofχ

in FeSi is well reproduced in the present treatment. In order to produce the Curie–Weiss
behaviour of the magnetic susceptibility at high temperature, the electron occupation has to
show a tendency towards slight saturation. The behaviour was actually observed in neutron
scattering measurements by Tajimaet al (1988). The peak structure of the density-of-states
curve around the band edges is also responsible for the Curie–Weiss behaviour.

4. Discussion

In the present paper we have succeeded in explaining the temperature dependence of the
magnetic susceptibility of FeSi over a wide temperature range. We could show both the
exponential rise of the magnetic susceptibility at low temperature and the Curie–Weiss-
like decrease at high temperature at the same time in a unified treatment. The underlying
physics of the origin of the Curie–Weiss behaviour is quite similar to the one that we



2604 Y Takahashi

proposed previously (Takahashi 1986). It comes from the so-called sum rule for the squared
local spin-fluctuation amplitude. We found that the peculiar temperature dependence of the
magnetic susceptibility of this compound results from the temperature dependence of the
spin-fluctuation spectrum, which reflects the gap structure of the electronic states and that of
the electron occupation number originating from the strong peak structure of the electronic
density of states around the edges of the energy gap.

In the present treatment we are led to the concept of temperature-induced moments, but
the meaning is different from that in our previous work where only the thermal component
of the spin fluctuations was considered. In the present case we refer instead to the induced
total spin-fluctuation amplitude, whose temperature dependence is independently determined
by the single-particle excitation of the charge degrees of freedom.

All of the experimental results obtained recently, as well as numerical band-structure
calculations, suggest that the magnetic properties of FeSi are at low temperature well
reproduced. In the present paper, we are successful in deriving the Curie–Weiss-like
temperature dependence of the magnetic susceptibility. All of these points suggest that
the anomalous magnetic properties of FeSi are basically realized in terms of the band
model if a proper account of the effects of exchange-enhanced spin fluctuations is taken. It
is reported (Huntet al 1994, Degiorgiet al 1994) that FeSi is not a simple semiconductor
at low temperature. We suppose that properties observed there are not intrinsic, and can
be ascribed to some extrinsic effects—due to impurity levels in the narrow-gap region, for
instance.

We show that the neutron scattering intensities are qualitatively well explained by
our simple semiconductor model, except some slight discrepancies in limited temperature
and wave-vector regions. In the present simplified treatment, we have neglected various
contributions. For instance, the inter-band contribution to the magnetic susceptibility was
neglected. As a semiconductor model we assume a simple free-electron-like dispersion
relation. The effects of band degeneracy are also ignored. All of these effects may slightly
alter the present results, though the qualitative features of results will remain the same. At
the same time, these effects may provide the answer to the remaining problems mentioned
above.

Before concluding this study, we would like to make a brief comment on our present
method. In the present treatment, we make use of a kind of sum rule in deriving the
temperature dependence of the magnetic susceptibility. It is thus free from any kinds of
approximation method. What we need is the form of the spin-fluctuation spectrum. On the
other hand, in our former treatment, we had to rely on the static approximation in order to
derive the non-linear mode–mode coupling among the various spin-fluctuation modes. We
have already mentioned that the conventional SCR theory was unable to treat the present
problem in its original form. It is also very interesting to note that the sum rule plays a
dominant role in determining the temperature dependence of the magnetic susceptibilities
for quite a wide class of the magnetic materials, ranging from insulator magnets to weak
itinerant-electron magnets.
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